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Abstrack I&tc constants for the ructious of the ~6~imcthylrmi~p~nyl~~~om ion 1 with silyl enol etbs, 
rllyl rikna5, and rllyl stanaacs show the nrctivity order H+CR-CH.$iMe, < I-I+CR-OSiMej < 
H$XR-cH2snBus 

In spite of the enormous importance, reactions of cationic electrophiles with silylated enol ethers have 

adopted in organic synthesis,* kinetic data on such reactions are rare.u Previously we have reported rate 

constants for the reactions of alkenes, allylelement compounds, and enol ethers toward chloro-, methyl-, and 

alkoxy-substituted benxhydryl cation& Because of the high nucleophilicity of alkyl and silyl enol ethers, the 

rate constants of their reactions with these carbocstions are very high, often approaching the diffusion limit. 

In order to obtain insight into the relationship between structure and nucleophilicity of silyl enol ethers, 

we have now investigated their reactivities toward the considerably less electrophilic bis(p 

dimethylaminophenyl)carbenium ion 1. In addition, we report some rate constants for the reactions of this 

carbenium ion with allylsilanes and allylstannanes, which provide a connection to the reactivity scale of x- 

nucleophiles, previously reported.5 

The kinetic experiments have generally been carried out with the his@-dimethylaminophenyl)carbenium 

triflate(l-UTF), prepared by reaction of the corresponding alcohol with 1 equivalent of 

trifluoromethanesulfonic acid in dry THF at 20 “C. In accord with the reaction mechanism described in 

Scheme 1, the photometrically monitored reactions follow second order kinetics, as previously reported for 

analogous reactions of other benxhydryl cations.43 

Scheme 1. 

R4 ‘oln4s I- --12 

2 
Cl-f- TMS0-l-f 

For the reaction of 1 with 2c, the influence of the counterion has been investigated. Within experimental 

error, 1-OTf [QXPC) = 0.361 L mol-1 s-t] and l-Cl- (0.368 L molt s-t) showed the same reactivity, as 

previously obsetved for related reactions.~J 
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Table 1. Rate Constants for the Reactions of the Bis(pdimethylaminophenyl)carbenium Ion 1 with Silylated 
En01 Ethers and other Blectron-Rich n-Systems (2O”C, CH$l;, 

Nucleophile 

YSm 

kz, L mol-1 s-l Ai?, kJ mol-l AP, J K-t moF1 

OMe 
2k 

9 N \ 0 21 

3.53 x 10-2 

cl x 10-4 

50.7 -100 

3.61 x 10-t 40.8 -114 

1.92 x 10-2 47.5 -116 

1 x 10-3 

3.06 x lo-3 53.6 -110 

2.54 x 1O-4 

3.23 x 10-Z 47.0 -113 

2.57 40.9 -98 

80.15 25.8 -120 

>ld 

The data in Scheme 2 allow a direct comparison of the reactivities of structurally related allylsilanes, silyl 
enol ethers, and allylstannanes (activating effects CH2SiMq < OSiMe3 e CH@nBu& Since silyl enol ethers 

and alkyl enol ethers differ only slightly in reactivity.3 this order indicates that the hyperconjugative effect of 

the CHZ-SnBq group is significantly larger than the conjugative effect of the OR group. 



3395 

Scheme 2. 
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In analogy to the reactivity order of the corresponding hydrocarbons (isobutene m I-methylcyclohexene e 

l-methylcyclopentene),4b compound 2d and the acyclic enol ether 2a show comparable nucleophilicities, while 

the analogous cyclopentene derivative 2e is considerably more reactive (Scheme 3). A similar reactivity ratio 

has been reported for the reactions of compounds 2e and 2d with nitrosoalkenes.6 

Scheme 3. 
AR o-, Qt 

R = CH9: krel (AnPhCH+, -70 ‘C)4b 1 0.37 22 

R = OSiMej krer (1, +20 “c) 1 0.54 10 

The 1,2-bis(trimethylsiloxy)-substituted cyclohexene 2e is one order of magnitude less reactive than the 

analogous monosubstituted compound 2d. Analogously, 1,2dialkoxyethylenes have been reported to be 

protonated slower than monoalkoxyethylenes.7 

The comparison between the silyl enol ether 2b and the structurally related ketene acetal 2k indicates an 

acceleration of more than a factor of lo5 by the additional methoxy group. Compound 21, the only enamine 

studied up to now, is so reactive that its reaction with 1 could not even be measured at -6O’C, i.e., the 

nucleophilicity of enamines exeeds that of silylated ketene acetals by several orders of magnitude. 

Table 2. Rate Constants (9 L mol-* s-t) for the Reactions of Different Benxhydryl Cations with Reactive 

Vinyl Derivatives (20 “C) 

x= 

Eq-+ ,J x- (=-J~ /(” dmr*, 

NMez k2 2.54 x 10-4 3.04 x 10-3 1.91 x 10-2 3.21 x 10-2 3.61 x 10-l 
k rel 1 12 75 126 1420 

OMe k2 9.3xWb) 1.4xwb) Cal.7 x 10s =) 6.9 x 104 b, - 
k rel 1 15 ~a.180 74 

Me k2 1.9xlOf+) - 1.3x10J3e) - 6.0 x l@=) 

krei 1 68 - 316 
Cl k2e) 6.7 x 108 2.3 x lo9 - 2.5 x 109 

k rel _ 1 3.4 _ 3.7 
a) Extmpolabd from linear free envy mlationahipa from k2 (-70 “C)M aaauming an activatiob entropy of -110 J ~1 K-1; b) 

Extrapolated from ka (-70 “c>4d aaauming an activation entropy of -110 J mol-t ~-1; c) Extrapolated from k2 (-70 ‘@ assuming aa 

activation entropy of -116 J mol-1 K-t ; e) Ref. [3] 

Table 2 shows that the selectivities of the bis(pdimethylamino)- and the bis(p-methoxy)- 

diphenylcarbenium ion are closely similar, in spite of dramatically different absolute rate constants. This 

constancy is not expected for all nuclcophiles, since in activation controlled reactions of this type, seltctivities 

mav increase. decrease or remain constant as the reactivity of the carbenlum ion i~ctuases.~9 The domain of 
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the reactivity selectivity principle, i.e., decreasing selectivity with increasing reactivity, is encountered, however, 

when reactions with rate constants close to the ditfusion limit are considered (see. lower two entries of Table 2). 

The reactions do not proceed via SET processe s. In recent work Fukuzumi and Oterato investigated the 

rates of electron transfer from 2d and 2k to various one-electron oxidants. On the basis of this work, one can 

derive rate constants for the electron transfer reaction from 2d (1x10-18 L mol-1 s-1) and 2k (1~10-1~ L mol-1 s-t) 
to the carbenium ion 1, for which Etn = -0.4 V vs SCE has been assumedlt. As the numbers are considerably 

smaller than the observed rate constants (Table l), the reactions investigated in this work must occur via polar 

mechanisms. 

The reactivity order of silyl enol ethers reported in Table 1 is in qualitative agreement with that 

previously derived from LASER flash photolytic measurements with more reactive carbenium ions3 Since k2 

values determined in this work are far from diffusion control, the “true” structure reactivity relationships now 

become evident, and silylated enol ethers can be added to the nucleophilicity scale previously developed for 

alkenes, ally1 element compounds, and arenes.Sl*2 
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